首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   552篇
  免费   26篇
  国内免费   7篇
测绘学   15篇
大气科学   41篇
地球物理   147篇
地质学   212篇
海洋学   51篇
天文学   80篇
综合类   4篇
自然地理   35篇
  2023年   3篇
  2022年   3篇
  2021年   6篇
  2020年   10篇
  2019年   15篇
  2018年   21篇
  2017年   14篇
  2016年   21篇
  2015年   19篇
  2014年   27篇
  2013年   38篇
  2012年   19篇
  2011年   33篇
  2010年   35篇
  2009年   38篇
  2008年   30篇
  2007年   23篇
  2006年   26篇
  2005年   14篇
  2004年   14篇
  2003年   20篇
  2002年   10篇
  2001年   6篇
  2000年   6篇
  1999年   14篇
  1998年   7篇
  1997年   8篇
  1996年   3篇
  1995年   9篇
  1994年   5篇
  1993年   5篇
  1992年   4篇
  1991年   4篇
  1990年   5篇
  1989年   5篇
  1987年   3篇
  1986年   6篇
  1985年   3篇
  1984年   7篇
  1983年   5篇
  1982年   3篇
  1981年   4篇
  1980年   3篇
  1978年   5篇
  1977年   5篇
  1976年   4篇
  1975年   3篇
  1974年   3篇
  1973年   2篇
  1966年   2篇
排序方式: 共有585条查询结果,搜索用时 62 毫秒
91.
We address key factors involved in determining water flow conditions in outflow channels on Mars, including the temperature of the sub-surface water being released and the environmental conditions of low temperature, low atmospheric pressure, and low acceleration due to gravity. We suggest how some of the assumptions made in previous work may be improved. Our model considers the thermodynamic effects of simultaneous evaporation and freezing of water, and fluid dynamical processes including changes in flow rheology caused by assimilation of cold rock and ice eroded at the channel bed, and ice crystal growth due to water freezing. We model how far initially turbulent water could flow in a channel before it erodes and entrains enough material to become laminar, and subsequently ceases to erode the bed. An ice raft will begin to form on the flood while transition occurs between turbulent and laminar flow. Estimates are given for water transit times, ~17–19 h, initial water depths, 50–62 m, and average flow speeds, 5–12 m s?1, in the Mangala and Athabasca Valles. We show that these two outflow channels, and by implication others like them, could plausibly have been formed in single water release events. Resulting mean erosion rates are approximately 0.7 mm s?1, a factor of three greater than previous estimates based on combinations of estimates of flood duration and required water volumes. This is explained by the consideration of the effects of eroded ice and the physics of thermal erosion in the present study.  相似文献   
92.
Seston transport and deposition in Pelorus sound,south Island,New Zealand   总被引:2,自引:2,他引:0  
Transport of seston (suspended sediment) in Pelorus Sound is controlled by tides and freshwater inflow. During high freshwater inflow, a moderately stratified estuarine circulation may be superimposed on the tidal circulation, but the latter dominates and transports seston seawards and landwards with the ebb and flood phases respectively. With extreme freshwater inflow, the estuarine circulation gains impetus and most seston is rapidly transported seaward in the low saline surface layer.

Irrespective of circulation there is a persistent trend in seston concentrations. Highest values occur at the sound's head because of the influence of nearby Pelorus and Kaituna Rivers and because of resuspension of bottom sediment by strong tidal currents. Seston concentrations wane along the sound until near the entrance, where values increase as a result of greater production of biogenic seston and because additional seston is brought in from Cook Strait with the flood tide. This trend parallels variability in the thicknesses of muddy bottom sediments. Muds are thick at the head where an extensive delta extends from the river mouths; muds gradually thin seaward and then thicken markedly in the vicinity of the sound entrance.

Seston weight and composition patterns and 3.5 kHz seismic profiles indicate Pelorus Sound acts as a double‐ended sediment trap. The upper reaches receive and retain river‐derived seston, whereas the sound entrance traps seston derived from Cook Strait. This situation appears to hold for both high and extremely high influxes of sediment.  相似文献   
93.
Sediment contamination by metals poses risks to coastal ecosystems and is considered to be problematic to dredging operations. In Brazil, there are differences in sedimentology along the Large Marine Ecosystems in relation to the metal distributions. We aimed to assess the extent of Al, Fe, Hg, Cd, Cr, Cu, Ni, Pb and Zn contamination in sediments from port zones in northeast (Mucuripe and Pecém) and southeast (Santos) Brazil through geochemical analyses and sediment quality ratings. The metal concentrations found in these port zones were higher than those observed in the continental shelf or the background values in both regions. In the northeast, metals were associated with carbonate, while in Santos, they were associated with mud. Geochemical analyses showed enrichments in Hg, Cd, Cu, Ni and Zn, and a simple application of international sediment quality guidelines failed to predict their impacts, whereas the use of site-specific values that were derived by geochemical and ecotoxicological approaches seemed to be more appropriate in the management of the dredged sediments.  相似文献   
94.
A field experiment consisting of geophysical logging and tracer testing was conducted in a single well that penetrated a sand-and-gravel aquifer at the U.S. Geological Survey Toxic Substances Hydrology research site on Cape Cod, Massachusetts. Geophysical logs and flowmeter/pumping measurements were obtained to estimate vertical profiles of porosity ϕ, hydraulic conductivity K, temperature, and bulk electrical conductivity under background, freshwater conditions. Saline-tracer fluid was then injected into the well for 2 h and its radial migration into the surrounding deposits was monitored by recording an electromagnetic-induction log every 10 min. The field data are analyzed and interpreted primarily through the use of Archie's (1942) law to investigate the role of topological factors such as pore geometry and connectivity, and grain size and packing configuration in regulating fluid flow through these coarse-grained materials. The logs reveal no significant correlation between K and ϕ, and imply that groundwater models that link these two properties may not be useful at this site. Rather, it is the distribution and connectivity of the fluid phase as defined by formation factor F, cementation index m, and tortuosity α that primarily control the hydraulic conductivity. Results show that F correlates well with K, thereby indicating that induction logs provide qualitative information on the distribution of hydraulic conductivity. A comparison of α, which incorporates porosity data, with K produces only a slightly better correlation and further emphasizes the weak influence of the bulk value of ϕ on K.  相似文献   
95.
The production and use of nanomaterials will inevitably lead to their disposal in the natural environment. To assess the risk that these materials pose to human and ecosystem health an understanding of their mobility and ultimate fate is essential. To date, however, relatively little research has been conducted on the fate of nanoparticles in subsurface systems. In this study the subsurface mobility of two carbon nanoparticles: nano-fullerenes (nC60) and multi-walled carbon nanotubes (MWCNTs) is assessed. A two-dimensional finite element model was used to simulate the movement of these nanoparticles under a range of hydrologic and geological conditions, including a heterogeneous permeability field. The numerical model is based on colloid filtration theory (CFT) with a maximum retention capacity term. For the conditions evaluated the carbon nanotubes are much more mobile than nC60 due to the smaller collector efficiency associated with carbon nanotubes. However, the mobility of nC60 increased significantly when a maximum retention capacity term was included in the model. Model results also demonstrate that, for the systems examined, nanoparticles were predicted to be less mobile in heterogeneous systems compared to the homogeneous systems with the same average hydraulic properties.  相似文献   
96.
The large slow‐moving landslide of Maca is located in the upper Colca valley (southern Peru), a region characterized by a well pronounced rainy period, and intense and recurrent sustained seismicity. The landslide, developed in deep lacustrine deposits, has recently accelerated, threatening the Maca village. This work aims at understanding the rupture mechanism and the causes of the recent landslide reactivation/acceleration. We present a multidisciplinary characterization of the Maca landslide that includes: (i) geological and morphological mapping in the field; (ii) remote sensing analysis using an historical aerial photograph of 1955 and the Pléiades satellite images (2013); (iii) global positioning system (GPS) including time‐series of surveys over 13 years, and continuous measurements over 14 months; (iv) a geophysical campaign with deep electrical resistivity tomography profiles acquired across the landslide mass. Our study shows that this 60 Mm3 landslide, which can be classified as a clay/silt compound landslide, moved by 15 m between 2001 and 2014 with a large inter‐annual velocity variation (up to a factor of 500) depending on the rainfall intensity. We suggest that these dramatic changes in velocity are the result of the combination of a threshold mechanism and the short intense rainy season in Peru. This study reveals three main driving factors acting at different timescales: (i) over several decades, the river course has significantly changed, causing the Maca landslide reactivation in the 1980s due to the erosion of its toe; (ii) at the year scale, a minimum amount of rainfall is required to trigger the motion and this amount controls the landslide velocity; (iii) transient changes in slide velocity may occur anytime due to earthquakes. This study particularly highlights the non‐linear behaviour of the motion with rainfall. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   
97.
Mesozoic rift basins locally bounding metamorphic core complexes have been recognized in Transbaikalia and northern China. Numerous basement outcrops located between these two regions, in eastern Mongolia, are considered as pre-Palaeozoic in age. One of these, the Ereendavaa Range, appears as a gneissic core marked by amphibolite-facies metamorphic conditions. The range is overlain to the NW by the unmetamorphosed Mesozoic Onon Basin. Below the basin, the upper part of the range consists of a gently NW-dipping shear zone associated with top-to-the-NW motion. The structural pattern is consistent with syn-extensional exhumation of the range. Preliminary geochronological data indicate that the shear zone is late Jurassic to early Cretaceous in age, coeval with the Onon Basin. These new data from eastern Mongolia constitute a link between Transbaikalia and northern China, indicating that NW–SE extensional Mesozoic tectonics occurred throughout the entire region.  相似文献   
98.
A mobile-bed, undistorted physical model (1:40) has been used to investigate different sediment supply strategies to the Old Rhine through bank protection removal and modifications of groyne dimensions and configuration, which cause bank erosion. This trained channel was previously the main bed of the upper Rhine downstream of Basel (Switzerland), but it has an artificially low flow regime since the construction of the Grand Canal d'Alsace, a navigation canal, and a flow control dam at Kembs (France). Training works and subsequent channel incision have also greatly reduced sediment transport rates and created a heavily armoured bed. The modelled pilot site has a groyne field on the left bank. Results show that the currently existing groynes at the site are not effective in creating high bank-side velocities conducive to bank erosion, even for flow rates significantly higher than the mean annual flow rate. The river bank has also proved to be more resistant than previously thought, allowing long stretches of bank protection to be safely removed. The physical model testing process has produced a new configuration for the groyne field, where two higher, larger island groynes are placed further apart than the three existing attached groynes. This innovative approach has proved effective, causing bank erosion for flow rates below the mean annual flow rate, with consistent erosion being observed. It has also been found that such a configuration does not pose a hazard for the Grand Canal d'Alsace, which is situated next to the Old Rhine, through excessive bank erosion during high flow events.  相似文献   
99.
The South Pacific low latitude western boundary currents (LLWBCs) carry waters of subtropical origin through the Solomon Sea before joining the equatorial Pacific. Changes in their properties or transport are assumed to impact El Niño Southern Oscillation (ENSO) dynamics. At ENSO timescales, the LLWBCs transport tends to counterbalance the interior geostrophic one. When transiting through the complex geography of the Solomon Sea, the main LLWBC, the New Guinea Coastal Undercurrent, cannot follow a unique simple route to the equator. Instead, its routes and water mass properties are influenced by the circulation occurring in the Solomon Sea. In this study, the response of the Solomon Sea circulation to ENSO is investigated based on a numerical simulation. The transport anomalies entering the Solomon Sea from the south are confined to the top 250 m of the water column, where they represent 7.5 Sv (based on ENSO composites) for a mean transport of 10 Sv. The induced circulation anomalies in the Solomon Sea are not symmetric between the two ENSO states because of (1) a bathymetric control at Vitiaz Strait, which plays a stronger role during El Niño, and (2) an additional inflow through Solomon Strait during La Niña events. In terms of temperature and salinity, modifications are particularly notable for the thermocline water during El Niño conditions, with cooler and fresher waters compared to the climatological mean. The surface water at Vitiaz Strait and the upper thermocline water at Solomon Strait, feeding respectively the equatorial Pacific warm pool and the Equatorial Undercurrent, particularly affect the heat and salt fluxes. These fluxes can change by up to a factor of 2 between extreme El Niño and La Niña conditions.  相似文献   
100.
The quality of bathing water is of considerable public importance due to the possibility of fecal contamination. In 2009, Croatia implemented the new European Bathing Water Directive (BWD, 2006/7/EC) establishing stricter microbiological standards for new parameters with new reference methods. This study aims to evaluate the equivalence of different methods according to the old and revised BWD and to provide the possibility of data comparison. Furthermore, the directive requires the establishment of the bathing water profile (BWP) for pollution risk assessment. The estimation of consistency of pollution risk assessment with obtained microbiological results was also performed.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号